non-abelian, soluble, monomial
Aliases: C62⋊2D4, C32⋊C4⋊2D4, C22⋊1S3≀C2, Dic3⋊D6⋊2C2, C32⋊2(C4⋊D4), C6.D6.4C22, S32⋊C4⋊3C2, (C2×C3⋊S3)⋊7D4, (C2×S3≀C2)⋊4C2, C3⋊S3.7(C2×D4), C3⋊S3.Q8⋊3C2, C2.23(C2×S3≀C2), (C2×S32).4C22, (C3×C6).23(C2×D4), C3⋊S3.8(C4○D4), (C22×C32⋊C4)⋊2C2, (C2×C3⋊S3).11C23, (C2×C32⋊C4).17C22, (C22×C3⋊S3).53C22, SmallGroup(288,890)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C2×C3⋊S3 — C62⋊D4 |
C1 — C32 — C3⋊S3 — C2×C3⋊S3 — C2×S32 — C2×S3≀C2 — C62⋊D4 |
C32 — C2×C3⋊S3 — C62⋊D4 |
Generators and relations for C62⋊D4
G = < a,b,c,d | a6=b6=c4=d2=1, ab=ba, cac-1=a3b4, dad=a-1b3, cbc-1=a2b3, bd=db, dcd=c-1 >
Subgroups: 920 in 148 conjugacy classes, 27 normal (17 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C2×C4, D4, C23, C32, Dic3, C12, D6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3×S3, C3⋊S3, C3⋊S3, C3×C6, C3×C6, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, C4⋊D4, C3×Dic3, C32⋊C4, C32⋊C4, S32, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, S3×D4, C6.D6, C3⋊D12, C3×C3⋊D4, S3≀C2, C2×C32⋊C4, C2×C32⋊C4, C2×S32, C22×C3⋊S3, S32⋊C4, C3⋊S3.Q8, Dic3⋊D6, C2×S3≀C2, C22×C32⋊C4, C62⋊D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C4⋊D4, S3≀C2, C2×S3≀C2, C62⋊D4
Character table of C62⋊D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 6F | 12A | 12B | |
size | 1 | 1 | 2 | 9 | 9 | 12 | 12 | 18 | 4 | 4 | 12 | 12 | 18 | 18 | 18 | 18 | 4 | 4 | 8 | 8 | 24 | 24 | 24 | 24 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2i | 0 | -2i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2i | 0 | 2i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 4 | 4 | 4 | 0 | 0 | 0 | 2 | 0 | 1 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | -1 | 0 | -1 | 0 | orthogonal lifted from S3≀C2 |
ρ16 | 4 | 4 | -4 | 0 | 0 | 0 | 2 | 0 | 1 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 1 | 2 | -1 | -1 | 0 | 1 | 0 | orthogonal lifted from C2×S3≀C2 |
ρ17 | 4 | 4 | 4 | 0 | 0 | -2 | 0 | 0 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | -2 | 0 | 1 | 0 | 1 | orthogonal lifted from S3≀C2 |
ρ18 | 4 | 4 | 4 | 0 | 0 | 2 | 0 | 0 | -2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | -2 | 0 | -1 | 0 | -1 | orthogonal lifted from S3≀C2 |
ρ19 | 4 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | -2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | -1 | 2 | 0 | 1 | 0 | -1 | orthogonal lifted from C2×S3≀C2 |
ρ20 | 4 | 4 | -4 | 0 | 0 | 2 | 0 | 0 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | -1 | 2 | 0 | -1 | 0 | 1 | orthogonal lifted from C2×S3≀C2 |
ρ21 | 4 | 4 | 4 | 0 | 0 | 0 | -2 | 0 | 1 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | 1 | 0 | 1 | 0 | orthogonal lifted from S3≀C2 |
ρ22 | 4 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 1 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 1 | 2 | -1 | 1 | 0 | -1 | 0 | orthogonal lifted from C2×S3≀C2 |
ρ23 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(7 8)(9 10)(11 12)(13 14 15)(16 17 18)(19 20 21 22 23 24)
(1 5 3 4 2 6)(7 11 10 8 12 9)(13 17)(14 18)(15 16)(19 22)(20 23)(21 24)
(1 15)(2 13 3 14)(4 16)(5 17 6 18)(7 24 12 22)(8 21 11 19)(9 23)(10 20)
(1 10)(2 7)(3 12)(4 9)(5 8)(6 11)(13 22)(14 24)(15 20)(16 23)(17 19)(18 21)
G:=sub<Sym(24)| (7,8)(9,10)(11,12)(13,14,15)(16,17,18)(19,20,21,22,23,24), (1,5,3,4,2,6)(7,11,10,8,12,9)(13,17)(14,18)(15,16)(19,22)(20,23)(21,24), (1,15)(2,13,3,14)(4,16)(5,17,6,18)(7,24,12,22)(8,21,11,19)(9,23)(10,20), (1,10)(2,7)(3,12)(4,9)(5,8)(6,11)(13,22)(14,24)(15,20)(16,23)(17,19)(18,21)>;
G:=Group( (7,8)(9,10)(11,12)(13,14,15)(16,17,18)(19,20,21,22,23,24), (1,5,3,4,2,6)(7,11,10,8,12,9)(13,17)(14,18)(15,16)(19,22)(20,23)(21,24), (1,15)(2,13,3,14)(4,16)(5,17,6,18)(7,24,12,22)(8,21,11,19)(9,23)(10,20), (1,10)(2,7)(3,12)(4,9)(5,8)(6,11)(13,22)(14,24)(15,20)(16,23)(17,19)(18,21) );
G=PermutationGroup([[(7,8),(9,10),(11,12),(13,14,15),(16,17,18),(19,20,21,22,23,24)], [(1,5,3,4,2,6),(7,11,10,8,12,9),(13,17),(14,18),(15,16),(19,22),(20,23),(21,24)], [(1,15),(2,13,3,14),(4,16),(5,17,6,18),(7,24,12,22),(8,21,11,19),(9,23),(10,20)], [(1,10),(2,7),(3,12),(4,9),(5,8),(6,11),(13,22),(14,24),(15,20),(16,23),(17,19),(18,21)]])
G:=TransitiveGroup(24,592);
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 5 3 4 2 6)(7 11 8 12 9 10)(13 14 15 16 17 18)(19 24 23 22 21 20)
(1 7 4 12)(2 8 6 11)(3 9 5 10)(13 21 16 24)(14 22 15 23)(17 19 18 20)
(1 21)(2 23)(3 19)(4 24)(5 20)(6 22)(7 13)(8 15)(9 17)(10 18)(11 14)(12 16)
G:=sub<Sym(24)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,5,3,4,2,6)(7,11,8,12,9,10)(13,14,15,16,17,18)(19,24,23,22,21,20), (1,7,4,12)(2,8,6,11)(3,9,5,10)(13,21,16,24)(14,22,15,23)(17,19,18,20), (1,21)(2,23)(3,19)(4,24)(5,20)(6,22)(7,13)(8,15)(9,17)(10,18)(11,14)(12,16)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,5,3,4,2,6)(7,11,8,12,9,10)(13,14,15,16,17,18)(19,24,23,22,21,20), (1,7,4,12)(2,8,6,11)(3,9,5,10)(13,21,16,24)(14,22,15,23)(17,19,18,20), (1,21)(2,23)(3,19)(4,24)(5,20)(6,22)(7,13)(8,15)(9,17)(10,18)(11,14)(12,16) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,5,3,4,2,6),(7,11,8,12,9,10),(13,14,15,16,17,18),(19,24,23,22,21,20)], [(1,7,4,12),(2,8,6,11),(3,9,5,10),(13,21,16,24),(14,22,15,23),(17,19,18,20)], [(1,21),(2,23),(3,19),(4,24),(5,20),(6,22),(7,13),(8,15),(9,17),(10,18),(11,14),(12,16)]])
G:=TransitiveGroup(24,593);
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 4 9 6 11 7)(2 3 10 5 12 8)(13 24)(14 19)(15 20)(16 21)(17 22)(18 23)
(1 24 6 13)(2 21 5 16)(3 14 10 23)(4 17 9 20)(7 15 11 22)(8 18 12 19)
(1 6)(4 11)(7 9)(14 23)(15 17)(16 21)(18 19)(20 22)
G:=sub<Sym(24)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,4,9,6,11,7)(2,3,10,5,12,8)(13,24)(14,19)(15,20)(16,21)(17,22)(18,23), (1,24,6,13)(2,21,5,16)(3,14,10,23)(4,17,9,20)(7,15,11,22)(8,18,12,19), (1,6)(4,11)(7,9)(14,23)(15,17)(16,21)(18,19)(20,22)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,4,9,6,11,7)(2,3,10,5,12,8)(13,24)(14,19)(15,20)(16,21)(17,22)(18,23), (1,24,6,13)(2,21,5,16)(3,14,10,23)(4,17,9,20)(7,15,11,22)(8,18,12,19), (1,6)(4,11)(7,9)(14,23)(15,17)(16,21)(18,19)(20,22) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,4,9,6,11,7),(2,3,10,5,12,8),(13,24),(14,19),(15,20),(16,21),(17,22),(18,23)], [(1,24,6,13),(2,21,5,16),(3,14,10,23),(4,17,9,20),(7,15,11,22),(8,18,12,19)], [(1,6),(4,11),(7,9),(14,23),(15,17),(16,21),(18,19),(20,22)]])
G:=TransitiveGroup(24,640);
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 7 3 11 5 10)(2 8 4 12 6 9)(13 24)(14 19)(15 20)(16 21)(17 22)(18 23)
(1 17)(2 14)(3 13 5 15)(4 16 6 18)(7 20 10 24)(8 23 9 21)(11 22)(12 19)
(2 12)(4 9)(6 8)(13 15)(14 19)(16 23)(18 21)(20 24)
G:=sub<Sym(24)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,7,3,11,5,10)(2,8,4,12,6,9)(13,24)(14,19)(15,20)(16,21)(17,22)(18,23), (1,17)(2,14)(3,13,5,15)(4,16,6,18)(7,20,10,24)(8,23,9,21)(11,22)(12,19), (2,12)(4,9)(6,8)(13,15)(14,19)(16,23)(18,21)(20,24)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,7,3,11,5,10)(2,8,4,12,6,9)(13,24)(14,19)(15,20)(16,21)(17,22)(18,23), (1,17)(2,14)(3,13,5,15)(4,16,6,18)(7,20,10,24)(8,23,9,21)(11,22)(12,19), (2,12)(4,9)(6,8)(13,15)(14,19)(16,23)(18,21)(20,24) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,7,3,11,5,10),(2,8,4,12,6,9),(13,24),(14,19),(15,20),(16,21),(17,22),(18,23)], [(1,17),(2,14),(3,13,5,15),(4,16,6,18),(7,20,10,24),(8,23,9,21),(11,22),(12,19)], [(2,12),(4,9),(6,8),(13,15),(14,19),(16,23),(18,21),(20,24)]])
G:=TransitiveGroup(24,647);
Matrix representation of C62⋊D4 ►in GL6(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 1 |
0 | 0 | 0 | 0 | -1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 1 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,-1,-1,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,-1,-1,0,0,0,0,0,0,0,1,0,0,0,0,-1,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0],[0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
C62⋊D4 in GAP, Magma, Sage, TeX
C_6^2\rtimes D_4
% in TeX
G:=Group("C6^2:D4");
// GroupNames label
G:=SmallGroup(288,890);
// by ID
G=gap.SmallGroup(288,890);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,141,422,219,2693,2028,362,797,1203]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=c^4=d^2=1,a*b=b*a,c*a*c^-1=a^3*b^4,d*a*d=a^-1*b^3,c*b*c^-1=a^2*b^3,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export